ADDITIONAL MATHEMATICS

Paper 1
MARK SCHEME
Maximum Mark: 80

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.
Cambridge is publishing the mark schemes for the October/November 2016 series for most Cambridge IGCSE ${ }^{\circledR}$, Cambridge International A and AS Level components and some Cambridge O Level components.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge O Level - October/November 2016	4037	12

Abbreviations

awrt	answers which round to
cao	correct answer only
dep	dependent
FT	follow through after error
isw	ignore subsequent working
oe	or equivalent
rot	rounded or truncated
SC	Special Case
soi	seen or implied
www	without wrong working

Question	Answer	Marks	Part Marks
1 (a) (i) (ii) (iii) (b) (i) (ii)	$\begin{aligned} & 10 \\ & 22 \\ & 4 \\ & Q \subset R \\ & P \cap Q=\varnothing, \text { or }\} \end{aligned}$	B1 B1 B1 B1 B1	
2	$a=1, \quad b=-3, c=-1$	B3	B1 for each
3	$\begin{aligned} & 3 y^{2}+5 y-2=0 \\ & y=\frac{1}{3}, y=-2 \\ & x=3^{\frac{1}{3}}, x=3^{-2} \\ & x=1.44, \quad x=\frac{1}{9} \end{aligned}$	B1, B1 M1 M1 A1, A1	B1 for $5 y$ or $5 \log _{3} x$, $\mathbf{B 1}$ for -2 for correct attempt at the solution of their quadratic equation for dealing with one base 3 logarithm correctly A1 for each
4 (i) (ii)	$32 x^{10}-\frac{80}{3} x^{7}+\frac{80}{9} x^{4}$ Coefficients needed: $\begin{aligned} & \left(3 \times \text { their }-\frac{80}{3}\right)+(1 \times \text { their } 32) \\ & =-48 \end{aligned}$	B3 M1 A1	B1 for each term, powers of x must be simplified for dealing with 2 terms Allow A1 for $-48 x^{7}$

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge O Level - October/November 2016	4037	12

Question	Answer	Marks	Part Marks
5 (i) (ii)	$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{3}{2(3 x+2)}$ When $x=-\frac{1}{3}, y=0, \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{3}{2}$ Equation of normal: $y=-\frac{2}{3}\left(x+\frac{1}{3}\right)$ $Q\left(0,-\frac{2}{9}\right)$ or $(0,0.22)$ or better $R\left(0, \frac{1}{2} \ln 2\right)$ or $(0,0.35)$ or better $\begin{aligned} \text { Area of } P Q R & =\frac{1}{2}\left(\frac{1}{2} \ln 2+\frac{2}{9}\right) \times \frac{1}{3} \\ & =0.0948 \end{aligned}$	B1 B1 M1 A1 B1 ft B1 B1	for correct derivative of log function for $y=0$ M1 for attempt at a gradient of a perpendicular from differentiation and the equation of the normal Follow through on their c from part (i) Allow 0.095
6 (a) (b) (i) (ii)	$\begin{aligned} & \mathbf{Y X}, \mathbf{X Z} \\ & \frac{1}{18}\left(\begin{array}{cc} 7 & 1 \\ -4 & 2 \end{array}\right) \\ & \mathbf{C}=\mathbf{A}^{-1} \mathbf{B} \\ & \\ & =\frac{1}{18}\left(\begin{array}{cc} 7 & 1 \\ -4 & 2 \end{array}\right)\left(\begin{array}{ll} -4 & 2 \\ 10 & 4 \end{array}\right) \\ & \\ & =\left(\begin{array}{cc} -1 & 1 \\ 2 & 0 \end{array}\right) \end{aligned}$	B2 B1, B1 M1 A1, A1	B2 for both with no extras B1 for 1 correct with or without extras B1 for both correct with extras B0 for anything else $\mathbf{B} 1$ for $\frac{1}{18}, \mathbf{B} 1$ for $\left(\begin{array}{cc}7 & 1 \\ -4 & 2\end{array}\right)$ for pre-multiplication A1 for any correct pair of elements, but must be from correct matrices

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge O Level - October/November 2016	4037	12

Question	Answer	Marks	Part Marks
$7 \quad$ (i) (ii) (iii) (iv) (v)	$(0, \sqrt{3})$ or $(0,1.73)$ or better $\left(\frac{\pi}{6}, 2\right)$ or $(0.524,2)$ or better $\cos \left(x-\frac{\pi}{6}\right)=0$ $x=\frac{2 \pi}{3}$ oe or 2.09 or better $2 \sin \left(x-\frac{\pi}{6}\right)$ $\begin{aligned} \text { Area } & =\left[2 \sin \left(x-\frac{\pi}{6}\right)\right]_{0}^{\frac{2 \pi}{3}} \\ & =2+1 \\ & =3 \end{aligned}$	B1 B1, B1 M1 A1 B1 M1 A1	B1 for each for correct attempt to solve trigonometric equation for correct use of their limits, in radians, into $k \sin \left(x-\frac{\pi}{6}\right)$.
8 (i) (ii) (iii)	$47-24=12 \theta$ $\theta=\frac{23}{12}$, so $\theta=1.917$ or better $\theta=1.92$ to 2 dp $\sin \frac{\theta}{2}=\frac{C D / 2}{12}$ $C D=\text { awrt } 19.6 \text { or } 19.7$ Area of sector = awrt 138 Area of triangle $A O B=$ awrt 67 or 68 Area of segment $=$ awrt 70 or 71 $A D \times A B+$ segment area $=425$ leading to $A D=$ awrt 18.1 or 18.0 Alternative method: Area of sector = awrt 138 Difference in length between $B C$ (or $A D$) and $O M$ where M is the midpoint of $C D=6.88$, allow awrt 6.9 Remaining area consists of two trapezia each of width 9.85 and each of area 143.4 $\frac{1}{2}(2 B C-6.88) \times 9.85=143.4 \text { oe }$ leading to $A D=$ awrt 18.1 or 18.0	$\begin{gathered} \text { M1 } \\ \text { A1 } \\ \\ \text { M1 } \\ \text { A1 } \\ \text { B1 } \\ \text { M1 } \\ \text { M1 } \\ \text { M1 } \\ \text { A1 } \\ \text { B1 } \\ \text { M1 } \\ \text { M1 } \\ \hline \text { M1 } \\ \text { A1 } \end{gathered}$	for complete correct method to get $\theta=$ must have evidence of working to more than 2 dp , allow if 1.916 seen (truncated) for a complete method, may use cosine rule to get $C D$ for sector area, allow unsimplified for a correct attempt at area for segment area (their sector area - their triangle area) for complete method to find $A D$ Allow A1 for 18 for sector area for attempt to find difference between parallel sides for area of one trapezium $\frac{1}{2}(2 B C-$ their 6.88$) \times$ their 9.85 oe for attempt to find either $B C$ or $A D$

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge O Level - October/November 2016	4037	12

Question	Answer	Marks	Part Marks
9 (i) (ii) (iii)	$\begin{aligned} & \mathrm{p}\left(\frac{3}{2}\right): \frac{27 a}{8}-\left(4 \times \frac{9}{4}\right)+\frac{3 b}{2}+18 \quad(=0) \\ & \mathrm{p}^{\prime}\left(\frac{3}{2}\right)=\left(3 a \times \frac{9}{4}\right)-\left(8 \times \frac{3}{2}\right)+b(=0) \end{aligned}$ leading to $9 a+4 b+24=0$ oe and $27 a+4 b-48=0$ oe leading to $a=4, b=-15$ $(x+2)(2 x-3)^{2}$ oe $\begin{aligned} & (x+2)(2 x-3)^{2}=x+2 \\ & x+2=0, x=-2 \end{aligned}$ $(2 x-3)^{2}=1$ leading to $x=1, x=2$	$\begin{gathered} \text { M1 } \\ \text { M1 } \\ \text { M1 } \\ \text { A1 } \\ \text { M1, A1 } \\ \\ \hline \text { B1 } \\ \hline \text { M1 } \\ \text { A1 } \end{gathered}$	for attempt at $\mathrm{p}\left(\frac{3}{2}\right)$ for differentiation and attempt at $\mathrm{p}^{\prime}\left(\frac{3}{2}\right)$ for solution of simultaneous equations, to get either a or b for both M1 for attempt at long division or factorisation Must be using $(x+2)$ correctly using part (ii) to get $x=-2$ for solution of the quadratic equation
10 (a) (i) (ii) (b) (i) (ii) (iii)	$20 U+\frac{1}{2}\left(U+\frac{U}{2}\right) 10=165$ leading to $U=6$ Gradient of line: -0.3 27 $t^{2}=8 \ln 4$ $t=3.33$ or better $\text { acceleration }=3 \frac{2 t}{8} \mathrm{e}^{\frac{t^{2}}{8}}\left(\mathrm{e}^{\frac{t^{2}}{8}}-4\right)^{2}$ When $t=1, a=6.98$	$\begin{gathered} \text { M1 } \\ \text { DM1 } \\ \text { A1 } \\ \text { M1, A1 } \\ \text { B1 } \\ \text { M1 } \\ \text { A1 } \\ \text { M1, A1 } \\ \text { M1, A1 } \end{gathered}$	for realising that area under the graph is needed and attempt to find an area for equating their area to 165 and attempt to solve M1 for use of the gradient, must be negative for a correct attempt to solve $\mathrm{e}^{\frac{t^{2}}{8}}=4$ M1 for a correct attempt to differentiate using the chain rule M1 for use of $t=1$ in their acceleration

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge O Level - October/November 2016	4037	12

